Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cytokine ; 165: 156172, 2023 05.
Article in English | MEDLINE | ID: covidwho-2256262

ABSTRACT

The COVID-19 pandemic has caused millions of deaths and has resulted in disastrous societal and economic impacts worldwide. During SARS-CoV-2 infection, abnormal levels of pro-inflammatory cytokines have been observed and were associated to the severity of the disease. Type I (-α/ß) and Type III (IFN-λ) interferons are family members of cytokines that play an important role in fighting viral replication during the early phases of infection. The location and timing of the IFNs production have been shown to be decisive for the COVID-19 outcome. Despite the effectiveness of COVID-19 vaccines and with the emergence of new SARS-CoV-2 variants, a better understanding of the involvement of IFNs as players in antiviral immunity in the COVID-19 pathophysiology is necessary to implement additional potent prophylactic and/or therapeutic approaches. In this study, we investigated the role of type I and III IFN in COVID-19 pathophysiology. We first analyzed the IFN-α, IFN-ß and IFN- λ mRNA expression in nasopharyngeal swabs and blood samples from Moroccan patients infected with SARS-CoV-2 and secondly correlated these IFNs expressions with COVID-19 clinical and biological parameters. Our results showed that in the upper airways of patients with mild, non-severe, or severe COVID-19 manifestations, the IFN- α, - ß and - λ are expressed in the same manner as in controls. However, in blood samples their expression was downregulated in all groups. Univariate linear models with interferons as predictors to evaluate clinical-biological parameters highlighted that the main clinical-biological relations were found when testing: FiO2, Lymphocyte values and virus load. Furthermore, the multivariate models confirmed that quantifications of interferons during COVID-19 are good biological markers for tracking COVID-19 pathophysiology.


Subject(s)
COVID-19 , Interferon Type I , Humans , Interferons , COVID-19 Vaccines , Pandemics , SARS-CoV-2 , Antiviral Agents , Cytokines , Interferon-alpha , Interferon Lambda
2.
Front Immunol ; 13: 1016982, 2022.
Article in English | MEDLINE | ID: covidwho-2123416

ABSTRACT

Type I and III Interferons (IFNs) are the initial antiviral cytokines produced in response to virus infection. These IFNs in turn bind to their respective receptors, trigger JAK-STAT signaling and induce the expression of IFN-stimulated genes (ISGs) to engage antiviral functions. Unlike the receptor for type I IFNs, which is broadly expressed, the expression of the type III IFN receptor is mainly confined to epithelial cells that line mucosal surfaces. Accumulating evidence has shown that type III IFNs may play a unique role in protecting mucosal surfaces against viral challenges. The porcine alphaherpesvirus pseudorabies virus (PRV) causes huge economic losses to the pig industry worldwide. PRV first replicates in the respiratory tract, followed by spread via neurons and via lymph and blood vessels to the central nervous system and internal organs, e.g. the kidney, lungs and intestinal tract. In this study, we investigate whether PRV triggers the expression of type I and III IFNs and whether these IFNs exert antiviral activity against PRV in different porcine epithelial cells: porcine kidney epithelial cells (PK-15), primary respiratory epithelial cells (PoREC) and intestinal porcine epithelial cells (IPEC-J2). We show that PRV triggers a multiplicity of infection-dependent type I IFN response and a prominent III IFN response in PK-15 cells, a multiplicity of infection-dependent expression of both types of IFN in IPEC-J2 cells and virtually no expression of either IFN in PoREC. Pretreatment of the different cell types with equal amounts of porcine IFN-λ3 (type III IFN) or porcine IFN-α (type I IFN) showed that IFN-α, but not IFN-λ3, suppressed PRV replication and spread in PK-15 cells, whereas the opposite was observed in IPEC-J2 cells and both types of IFN showed anti-PRV activity in PoREC cells, although the antiviral activity of IFN-α was more potent than that of IFN-λ3 in the latter cell type. In conclusion, the current data show that PRV-induced type I and III IFN responses and their antiviral activity depend to a large extent on the epithelial cell type used, and for the first time show that type III IFN displays antiviral activity against PRV in epithelial cells from the respiratory and particularly the intestinal tract.


Subject(s)
Herpesvirus 1, Suid , Swine , Animals , Antiviral Agents/pharmacology , Epithelial Cells , Interferon-alpha , Interferon Lambda
3.
J Virol ; 96(7): e0170521, 2022 04 13.
Article in English | MEDLINE | ID: covidwho-1736024

ABSTRACT

The coronavirus SARS-CoV-2 caused the COVID-19 global pandemic leading to 5.3 million deaths worldwide as of December 2021. The human intestine was found to be a major viral target which could have a strong impact on virus spread and pathogenesis since it is one of the largest organs. While type I interferons (IFNs) are key cytokines acting against systemic virus spread, in the human intestine type III IFNs play a major role by restricting virus infection and dissemination without disturbing homeostasis. Recent studies showed that both type I and III IFNs can inhibit SARS-CoV-2 infection, but it is not clear whether one IFN controls SARS-CoV-2 infection of the human intestine better or with a faster kinetics. In this study, we could show that type I and III IFNs both possess antiviral activity against SARS-CoV-2 in human intestinal epithelial cells (hIECs); however, type III IFN is more potent. Shorter type III IFN pretreatment times and lower concentrations were required to efficiently reduce virus load compared to type I IFNs. Moreover, type III IFNs significantly inhibited SARS-CoV-2 even 4 h postinfection and induced a long-lasting antiviral effect in hIECs. Importantly, the sensitivity of SARS-CoV-2 to type III IFNs was virus specific since type III IFN did not control VSV infection as efficiently. Together, these results suggest that type III IFNs have a higher potential for IFN-based treatment of SARS-CoV-2 intestinal infection compared to type I IFNs. IMPORTANCE SARS-CoV-2 infection is not restricted to the respiratory tract and a large number of COVID-19 patients experience gastrointestinal distress. Interferons are key molecules produced by the cell to combat virus infection. Here, we evaluated how two types of interferons (type I and III) can combat SARS-CoV-2 infection of human gut cells. We found that type III interferons were crucial to control SARS-CoV-2 infection when added both before and after infection. Importantly, type III interferons were also able to produce a long-lasting effect, as cells were protected from SARS-CoV-2 infection up to 72 h posttreatment. This study suggested an alternative treatment possibility for SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Interferon Type I , Interferons , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cells, Cultured , Epithelial Cells , Humans , Interferon Type I/pharmacology , Interferons/pharmacology , SARS-CoV-2/drug effects , Interferon Lambda
4.
Blood ; 138:1767, 2021.
Article in English | EMBASE | ID: covidwho-1582215

ABSTRACT

Introduction Severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) can induce a strong host immune response. Several groups have investigated the course of antibody responses in patients recovering from SARS-CoV-2 infections but little is known about the recovery of cellular immunity. This study investigated the cellular immune response in people who had recovered from SARS-CoV2 infection. Methods 162 coronavirus disease 2019 (COVID-19) convalescent plasma donors (CCD) and 40 healthy donor (HD) controls were enrolled prospectively in an IRB-approved protocol (Clinical Trials Number: NCT04360278) and provided written informed consent to participate in the study. Using the nCounter platform and host response panel with 785 genes across more than 50 pathways, we compared transcriptomic profiles on RNA samples obtained from the peripheral blood leukocytes of these 162 CCD and 40 HD. Additionally, in 69 of the 162 CCD samples, we evaluated transcriptomic trends at more than one-time point during the convalescent period. Results Age, sex, ethnicity, and body mass index distributions were similar among the CCD and HD. With respect to baseline complete blood counts, hemoglobin, platelets, and absolute basophil and eosinophil counts, all were similar among CCD and HD (Table 1). However, despite sample collections occurring several days after convalescence, mean counts for absolute neutrophil counts, absolute monocyte counts, and absolute lymphocyte counts were significantly higher among CCD compared to HD. 30-90 days after diagnosis, 19 of 773 genes differed (FDR < 0.05) between the average CCD and HD samples. Up-regulated genes included MAFB, CTLA4, PTGS2, and the chemokine signaling genes CXCR4, CXCL5, CXCL2 and CCR4. Down-regulated genes included PTGER2, CASP8, and the interleukins IL36A, IL31, IL20 and IL21 (Figure 1 a,b). Differential gene expression persisted for months. At 90-120 days, 13 genes were differentially regulated, including again MAFB CXCR4, PTGS2, CXCL2 and PTGER2, plus SMAD4. At 120-150 days post-diagnosis, 58 genes were differentially expressed (FDR < 0.05) compared to HD. Pathways with up-regulated genes included Treg differentiation, type III interferon signaling and chemokine signaling. 150-360 days post-diagnosis, 4 genes remained up-regulated on average (FDR < 0.05): PTGS2, PIK3CR, CXCL1 and SMAD4 (Figure 1 c,d). Individual patients varied considerably from the mean trend. Scoring samples by their similarity to the gene expression profile of the mean HD sample, 21 CCD samples from 20 unique patients (12%) were identified as highly perturbed from HD. 84% of these highly perturbed samples were collected > 90 days post-diagnosis. Of these 21 samples, 6 were distinguished by > 2-fold up-regulation of a cluster of interleukin and type-1 interferon genes (Figure 2). Conclusions Overall, our study identified important gene expression trends in CCD compared to HD in the post-acute period. The changes varied with time and among donors. As the expression of T-cell inhibitory molecule CTLA4 fell, the number of differentially expressed increased with the most marked changes occurring 120 to 150 days post-diagnosis in genes in chemokine signaling, type III interferon signaling and Treg pathways. Persistent alterations in inflammatory pathways and T-cell activation/exhaustion markers for months after active infection may help shed light on the pathophysiology of a prolonged post-viral syndrome observed in individuals following recovery from COVID-19 infection. Our data may serve as the basis for risk modification strategies in the period of active infection. Future studies may inform the ability to identify druggable targets involving these pathways to mitigate the long-term effects of COVID-19 infection. [Formula presented] Disclosures: Danaher: NanoString Technologies: Current Employment, Current holder of individual stocks in a privately-held company.

5.
J Med Virol ; 93(7): 4559-4563, 2021 07.
Article in English | MEDLINE | ID: covidwho-1162848

ABSTRACT

Coronavirus disease 2019 (COVID-19) is globally rampant, and to curb the growing burden of this disease, in-depth knowledge about its pathophysiology is needed. This was an observational study conducted at a single center to investigate serum cytokine and chemokine levels of COVID-19 patients, based on disease severity. We included 72 consecutive COVID-19 patients admitted to our hospital from March 21 to August 31, 2020. Patients were divided into Mild-Moderate I (mild) and Moderate II-Severe (severe) groups based on the COVID-19 severity classification developed by the Ministry of Health, Labor and Welfare (MHLW) of Japan. We compared the patient characteristics as well as the serum cytokine and chemokine levels on the day of admission between the two groups. Our findings indicated that the severe group had significantly higher levels of serum fibrinogen, d-dimer, lactate dehydrogenase, C-reactive protein, ferritin, Krebs von den Lungen-6, surfactant protein (SP)-D, and SP-A than the mild group. Strikingly, the levels of interleukin (IL)-28A/interferon (IFN)-λ2 were significantly lower in the severe group than in the mild group. We believe that reduced levels of type III interferons (IFN-λs) and alterations in the levels of other cytokines and chemokines may impact the severity of the disease.


Subject(s)
COVID-19/blood , Chemokines/blood , Interferons/blood , SARS-CoV-2/immunology , Adult , Aged , C-Reactive Protein/analysis , COVID-19/pathology , Down-Regulation , Female , Ferritins/blood , Fibrin Fibrinogen Degradation Products/analysis , Fibrinogen/analysis , Humans , Interferons/biosynthesis , Interleukins/blood , L-Lactate Dehydrogenase/blood , Male , Middle Aged , Mucin-1/blood , Pulmonary Surfactant-Associated Protein A/blood , Pulmonary Surfactant-Associated Protein D/blood , Severity of Illness Index , Interferon Lambda
6.
Cell Rep ; 34(13): 108916, 2021 03 30.
Article in English | MEDLINE | ID: covidwho-1128920

ABSTRACT

The presence of an ORF6 gene distinguishes sarbecoviruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 from other betacoronaviruses. Here we show that ORF6 inhibits induction of innate immune signaling, including upregulation of type I interferon (IFN) upon viral infection as well as type I and III IFN signaling. Intriguingly, ORF6 proteins from SARS-CoV-2 lineages are more efficient antagonists of innate immunity than their orthologs from SARS-CoV lineages. Mutational analyses identified residues E46 and Q56 as important determinants of the antagonistic activity of SARS-CoV-2 ORF6. Moreover, we show that the anti-innate immune activity of ORF6 depends on its C-terminal region and that ORF6 inhibits nuclear translocation of IRF3. Finally, we identify naturally occurring frameshift/nonsense mutations that result in an inactivating truncation of ORF6 in approximately 0.2% of SARS-CoV-2 isolates. Our findings suggest that ORF6 contributes to the poor IFN activation observed in individuals with coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19/metabolism , Interferon Type I/metabolism , Viral Proteins/metabolism , Animals , COVID-19/genetics , Chlorocebus aethiops , HEK293 Cells , Humans , Immunity, Innate/immunology , SARS-CoV-2/isolation & purification , Signal Transduction/immunology , Vero Cells , Viral Proteins/genetics
7.
Cell Rep ; 33(5): 108339, 2020 11 03.
Article in English | MEDLINE | ID: covidwho-898565

ABSTRACT

Here, we report our studies of immune-mediated regulation of Zika virus (ZIKV), herpes simplex virus 1 (HSV-1), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the human cornea. We find that ZIKV can be transmitted via corneal transplantation in mice. However, in human corneal explants, we report that ZIKV does not replicate efficiently and that SARS-CoV-2 does not replicate at all. Additionally, we demonstrate that type III interferon (IFN-λ) and its receptor (IFNλR1) are expressed in the corneal epithelium. Treatment of human corneal explants with IFN-λ, and treatment of mice with IFN-λ eye drops, upregulates antiviral interferon-stimulated genes. In human corneal explants, blockade of IFNλR1 enhances replication of ZIKV and HSV-1 but not SARS-CoV-2. In addition to an antiviral role for IFNλR1 in the cornea, our results suggest that the human cornea does not support SARS-CoV-2 infection despite expression of ACE2, a SARS-CoV-2 receptor, in the human corneal epithelium.


Subject(s)
Betacoronavirus/physiology , Cornea/virology , Coronavirus Infections/transmission , Herpesvirus 1, Human/physiology , Interferons/immunology , Pneumonia, Viral/transmission , Zika Virus/physiology , Animals , Betacoronavirus/immunology , COVID-19 , Cornea/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Herpes Simplex/immunology , Herpes Simplex/transmission , Herpes Simplex/virology , Humans , Mice , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Virus Replication/physiology , Zika Virus Infection/immunology , Zika Virus Infection/transmission , Zika Virus Infection/virology , Interferon Lambda
8.
Vet Microbiol ; 247: 108785, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-827867

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes watery diarrhea, vomiting and mortality in nursing piglets. Type III interferons (IFN-λs) are the major antiviral cytokines in intestinal epithelial cells, the target cells in vivo for PDCoV. In this study, we found that PDCoV infection remarkably inhibited Sendai virus-induced IFN-λ1 production by suppressing transcription factors IRF and NF-κB in IPI-2I cells, a line of porcine intestinal mucosal epithelial cells. We also confirmed that PDCoV infection impeded the activation of IFN-λ1 promoter stimulated by RIG-I, MDA5 and MAVS, but not by TBK1 and IRF1. Although the expression levels of IRF1 and MAVS were not changed, PDCoV infection resulted in reduction of the number of peroxisomes, the platform for MAVS to activate IRF1, and subsequent type III IFN production. Taken together, our study demonstrates that PDCoV suppresses type III IFN responses to circumvent the host's antiviral immunity.


Subject(s)
Coronavirus Infections/veterinary , Epithelial Cells/immunology , Epithelial Cells/virology , Host-Pathogen Interactions/immunology , Interferons/antagonists & inhibitors , Animals , Cell Line , Coronavirus , Coronavirus Infections/immunology , Coronavirus Infections/virology , Interferon Regulatory Factor-1/antagonists & inhibitors , Interferon Regulatory Factor-1/immunology , Interferons/immunology , Intestines/cytology , Intestines/virology , Kidney/cytology , Kidney/virology , NF-kappa B/antagonists & inhibitors , NF-kappa B/immunology , Sendai virus/immunology , Signal Transduction/immunology , Swine/virology , Swine Diseases/immunology , Swine Diseases/virology , Interferon Lambda
SELECTION OF CITATIONS
SEARCH DETAIL